Lab-On-A-Chip: Veridex & MGH Collaborate On Next-Generation Circulating Tumor Cell Test

Veridex, LLC announces a collaboration with Massachusetts General Hospital to develop and commercialize a next-generation circulating tumor cell technology for capturing, counting and characterizing tumor cells found in patients’ blood.

Yesterday, Veridex, LLC (Veridex) announced a collaboration with Massachusetts General Hospital (MGH) to develop and commercialize a next-generation circulating tumor cell (CTC) technology for capturing, counting and characterizing tumor cells found in patients’ blood. The collaboration will involve Ortho Biotech Oncology Research & Development (ORD), a unit of Johnson & Johnson Pharmaceutical Research & Development. It focuses on the development of a next-generation system that will enable CTCs to be used both by oncologists as a diagnostic tool for personalizing patient care, as well as by researchers to accelerate and improve the process of drug discovery and development.

The collaboration will rely on the collective scientific, technical, clinical, and commercial expertise between the partners: MGH’s experience in clinical research and novel CTC technologies; the experience of Veridex as the only diagnostics company to have brought CTC technology to the U.S. market as an FDA-cleared in vitro diagnostic (IVD) assay ( “CellSearch® CTC Test”) for capturing and counting the number of tumor cells in the blood to help inform patients and their physicians about prognosis and overall survival in certain types of metastatic cancers; and ORD’s expertise in oncology therapeutics, biomarkers and companion diagnostics.  The platform to be developed will be a bench-top system to specifically isolate and explore the biology of rare cells at the protein, RNA and DNA levels.

“This new technology has the potential to facilitate an easy-to-administer, non-invasive blood test that would allow us to count tumor cells, and to characterize the biology of the cells,” said Robert McCormack, Head of Technology Innovation and Strategy, Veridex. “Harnessing the information contained in these cells in an in vitro clinical setting could enable tools to help select treatment and monitor how patients are responding.”

“The role of CTCs in drug discovery and development is growing as new technologies allow us to use CTCs for the first time as templates for novel DNA, RNA and protein biomarkers,” said Nicholas Dracopoli, Vice President, Biomarkers, ORD. “Given the demand for actionable data to guide personalized medicine for patients with cancer, there is a rapidly growing need for advanced, automated non-invasive technologies that can aid in selection of treatment and monitor response throughout the course of their disease.”

Mehmet Toner, Ph.D., Professor of Surgery, Massachusetts General Hospital (MGH) & Harvard Medical School; Director, MGH BioMicro- ElectroMechanical Systems Resource Center

“The challenging goal of sorting extremely rare circulating tumor cells from blood requires continuous technological, biological and clinical innovation to fully explore the utility of these precious cells in clinical oncology,” said Mehmet Toner, Ph.D., director of the BioMicroElectroMechanical Systems Resource Center in the MGH Center for Engineering in Medicine. “We have developed and continue to develop a broad range of technologies that are evolving what we know about cancer and cancer care. This collaboration is an opportunity to apply our past learning to the advancement of a platform that will ultimately benefit patients with cancer.”

Building on its successful development and evolution of CTC technology, as well as contributions to the body of science in the CTC field, MGH aims to revolutionize how oncologists detect, monitor and potentially treat cancers.  The MGH team has already developed two generations of a microfluidic chip capable of capturing CTCs with a high rate of efficiency. However the third generation technology now being developed with the companies is based on a new technological platform and will aim for even higher sensitivity, as well as suitability for broad applications and ready dissemination.

In the above demonstration of the first generation CTC-Chip, circulating tumor cells (fluorescent labeled, shown in white) mixed with blood (not labeled) are captured on nano-scale posts as they flow through the chip. The chip is the size of a microscope slide with 78,000 posts, which are coated with antibodies to epithelial cell adhesion molecules in tumor cells. (Video courtesy of Dr. Sunitha Nagrath, Massachusetts General Hospital/Harvard Medical School)

“This agreement is quite different from the usual academic-industrial agreement because we will be working together to bring new MGH-invented technology from its current, very early stage, through prototype and scale-up, to our ultimate goals of FDA approval and clinical adoption,” says Dr. Toner. “Our innovation team will be dedicated to developing this technology from its basic scientific principles all the way to initial prototyping within the biological research and clinical environments. Veridex has the knowledge required to translate early-stage technology into a product that can be reliably manufactured and meet regulatory requirements.

“Applying data gathered from CTCs to the care of cancer patients is a complex problem, and our strategy is to diversify technological approaches to find the best solutions for specific applications,” Toner adds. “We may find that different technologies work better for diagnosis, for prognosis and for the long-term goal of early detection; so we don’t want to confine ourselves to a single option.” His team is continuing to develop the microfluidic chip technology, with the support of Stand Up to Cancer.

Daniel A. Haber, M.D., Ph.D., Director, Massachusetts General Hospital Cancer Center

Daniel Haber, MD, PhD, director of the MGH Cancer Center, says, “The ability to establish a dedicated MGH research center focused on the intersection of bioengineering, molecular biology and clinical oncology presents an opportunity to develop a next-generation platform that will help us detect, define and monitor cancer cells more effectively – which should make an enormous difference in the lives of so many patients and their families.”

About Circulating Tumor Cells

Circulating tumor cells are cancer cells that have detached from the tumor and are found at extremely low levels in the bloodstream. The value of capturing and counting CTCs is evolving as more research data is gathered about the utility of these markers in monitoring disease progression and potentially guiding personalized cancer therapy.

About Veridex, LLC

Veridex, LLC, a Johnson & Johnson company, is an organization dedicated to providing physicians with high-value diagnostic oncology products. Veridex’s IVD products may significantly benefit patients by helping physicians make more informed decisions that enable better patient care. Veridex’s Clinical Research Solutions provide tools and services that may be used for the selection, identification and enumeration of targeted rare cells in peripheral blood for the identification of biomarkers, aiding scientists in their search for new, targeted therapies. For more information, visit www.veridex.com.

About Ortho Biotech Oncology Research & Development

Ortho Biotech Oncology Research & Development, a unit of Johnson & Johnson Pharmaceutical Research & Development, is a research and development organization that strives to transform cancer to a preventable, chronic or curable disease by delivering extraordinary and accessible diagnostic and therapeutic solutions that prolong and improve patients’ lives.

About Massachusetts General Hospital

Celebrating the 200th anniversary of its founding in 1811, Massachusetts General Hospital is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $600 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine. For more information visit http://www.mgh.harvard.edu/.

Sources:

4 thoughts on “Lab-On-A-Chip: Veridex & MGH Collaborate On Next-Generation Circulating Tumor Cell Test

  1. I believe that this technology was invented by Paul A. Liberti, PHD, the founder of Immunicon Corp. In Pennsylvania.

    Peter C. Stine

    Like

  2. One of the better news articles on the Veridex/Johnson and Johnson Mass Gen Hospital collaboration that I’ve found. Good background on CTCs. This website — healthinfoispower.com — is a good source for cancer research coverage that the lay person can understand.

    Like

    • Dear Cherri,

      Many thanks for the kind words. The understandability of the website is very important to us. We invite you to stop by again and leave a comment.

      All the best,

      Paul

      Like

  3. BioView is a producer of automated FISH scanning and analysis sytems including clinical applications for FISH analysis on tissue (breast, glioma, melanoma, prostate,) and for monolayers of cells (blood, bone marrow, bladder washings and urine) for the indication of abnormal signal patterns (deletions,enumerations, translocations). BioView is providing to Mass General a method to characterize CTC’s – circulating tumor cells – as they are collected and harvested from blood. For more information contact David Kutas, CEO and President of Bioview USA email david@bioview.co.il
    or call 1-978-670-4741.

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s