Removal of Ovarian Cancer Cells From Human Ascites Fluid Using Magnetic Nanoparticles

Scientists at Georgia Tech and the Ovarian Cancer Institute have further developed a potential new treatment against cancer that uses magnetic nanoparticles to attach to ovarian cancer cells, removing them from the body. The treatment, tested in mice in 2008, has now been tested using samples from human ovarian cancer patients. The results appear online in the journal Nanomedicine.

Nanoparticles, in brown, attach themselves to ovarian cancer cells, in violet, from the human abdominal cavity. (Credit: Ken Scarberry/Georgia Tech)

Scientists at Georgia Institute of Technology (Georgia Tech) and the Ovarian Cancer Institute have further developed a potential new treatment against cancer that uses magnetic nanoparticles to attach to ovarian cancer cells, removing them from the body. The treatment, tested in mice in 2008, has now been tested using samples from human ovarian cancer patients. The results appear online in the journal Nanomedicine.

John McDonald Ph.D., Professor & Associate Dean for Biology Program Development, Georgia Institute of Technology; Chief Research Scientist, Ovarian Cancer Institute (Credit: Georgia Tech)

“We are primarily interested in developing an effective method to reduce the spread of ovarian cancer cells to other organs ,” said John McDonald, professor at the the School of Biology at the Georgia Institute of Technology and chief research scientist at the Ovarian Cancer Institute.

The idea came to the research team from the work of Ken Scarberry, then a Ph.D. student at Georgia Tech. Scarberry originally conceived of the idea as a means of extracting viruses and virally infected cells. At his advisor’s suggestion Scarberry began looking at how the system could work with cancer cells.

He published his first paper on the subject in the Journal of the American Chemical Society in July 2008. In that paper he and McDonald showed that by giving the cancer cells of the mice a fluorescent green tag and staining the magnetic nanoparticles red, they were able to apply a magnet and move the green cancer cells to the abdominal region.

Recently, McDonald and Scarberry (currently a postdoctoral fellow in McDonald’s lab) have shown that the magnetic technique works with human ovarian cancer cells.

Ken Scarberry Ph.D., Postdoctoral Fellow, McDonald Laboratory, Georgia Institute of Technology (Credit: Robert Felt, Georgia Tech.)

“Often, the lethality of cancers is not attributed to the original tumor but to the establishment of distant tumors by cancer cells that exfoliate from the primary tumor,” said Scarberry. “Circulating tumor cells can implant at distant sites and give rise to secondary tumors. Our technique is designed to filter the peritoneal fluid or blood and remove these free floating cancer cells, which should increase longevity by preventing the continued metastatic spread of the cancer.”

In tests, they showed that their technique worked as well with capturing ovarian cancer cells from human patient samples as it did previously in mice. The next step is to test how well the technique can increase survivorship in live animal models. If that goes well, they will then test it with humans.

Sources:

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s